Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Int J Mol Sci ; 24(11)2023 May 25.
Article in English | MEDLINE | ID: covidwho-20231953

ABSTRACT

The blood-brain barrier (BBB) is a complex network of tightly regulated cells and transport proteins that separate the circulating blood from the brain tissue [...].


Subject(s)
Blood-Brain Barrier , Brain , Blood-Brain Barrier/metabolism , Brain/metabolism , Biological Transport , Carrier Proteins/metabolism
2.
Brain Behav Immun ; 109: 251-268, 2023 03.
Article in English | MEDLINE | ID: covidwho-2258334

ABSTRACT

COVID-19 and especially Long COVID are associated with severe CNS symptoms and may place persons at risk to develop long-term cognitive impairments. Here, we show that two non-infective models of SARS-CoV-2 can cross the blood-brain barrier (BBB) and induce neuroinflammation, a major mechanism underpinning CNS and cognitive impairments, even in the absence of productive infection. The viral models cross the BBB by the mechanism of adsorptive transcytosis with the sugar N-acetylglucosamine being key. The delta and omicron variants cross the BB B faster than the other variants of concern, with peripheral tissue uptake rates also differing for the variants. Neuroinflammation induced by icv injection of S1 protein was greatly enhanced in young and especially in aged SAMP8 mice, a model of Alzheimer's disease, whereas sex and obesity had little effect.


Subject(s)
Alzheimer Disease , COVID-19 , Humans , Mice , Animals , Blood-Brain Barrier/metabolism , Alzheimer Disease/metabolism , SARS-CoV-2 , COVID-19/complications , Neuroinflammatory Diseases , Post-Acute COVID-19 Syndrome
3.
Neurol Neurochir Pol ; 57(1): 14-25, 2023.
Article in English | MEDLINE | ID: covidwho-2283043

ABSTRACT

The typical manifestation of coronavirus 2 (CoV-2) infection is a severe acute respiratory syndrome (SARS) accompanied by pneumonia (COVID-19). However, SARS-CoV-2 can also affect the brain, causing chronic neurological symptoms, variously known as long, post, post-acute, or persistent COVID-19 condition, and affecting up to 40% of patients. The symptoms (fatigue, dizziness, headache, sleep disorders, malaise, disturbances of memory and mood) usually are mild and resolve spontaneously. However, some patients develop acute and fatal complications, including stroke or encephalopathy. Damage to the brain vessels mediated by the coronavirus spike protein (S-protein) and overactive immune responses have been identified as leading causes of this condition. However, the molecular mechanism by which the virus affects the brain still needs to be fully delineated. In this review article, we focus on interactions between host molecules and S-protein as the mechanism allowing the transit of SARS-CoV-2 through the blood-brain barrier to reach the brain structures. In addition, we discuss the impact of S-protein mutations and the involvement of other cellular factors conditioning the pathophysiology of SARS-CoV-2 infection. Finally, we review current and future COVID-19 treatment options.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Blood-Brain Barrier/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , COVID-19 Drug Treatment
4.
Mol Psychiatry ; 27(9): 3573-3582, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2185732

ABSTRACT

The choroid plexus (CP) is a delicate and highly vascularized structure in the brain comprised of a dense network of fenestrated capillary loops that help in the synthesis, secretion and circulation of cerebrospinal fluid (CSF). This unique neuroanatomical structure is comprised of arachnoid villi stemming from frond-like surface projections-that protrude into the lumen of the four cerebral ventricles-providing a key source of nutrients to the brain parenchyma in addition to serving as a 'sink' for central nervous system metabolic waste. In fact, the functions of the CP are often described as being analogous to those of the liver and kidney. Beyond forming a barrier/interface between the blood and CSF compartments, the CP has been identified as a modulator of leukocyte trafficking, inflammation, cognition, circadian rhythm and the gut brain-axis. In recent years, advances in molecular biology techniques and neuroimaging along with the use of sophisticated animal models have played an integral role in shaping our understanding of how the CP-CSF system changes in relation to the maturation of neural circuits during critical periods of brain development. In this article we provide an ontogenetic perspective of the CP and review the experimental evidence implicating this structure in the pathophysiology of neurodevelopmental and neuropsychiatric disorders.


Subject(s)
Choroid Plexus , Neuroanatomy , Animals , Choroid Plexus/blood supply , Choroid Plexus/metabolism , Brain/metabolism , Central Nervous System , Circadian Rhythm , Cerebrospinal Fluid/metabolism , Blood-Brain Barrier/metabolism
5.
Int J Mol Sci ; 22(18)2021 Sep 19.
Article in English | MEDLINE | ID: covidwho-1934141

ABSTRACT

Central nervous system (CNS) diseases are the leading causes of death and disabilities in the world. It is quite challenging to treat CNS diseases efficiently because of the blood-brain barrier (BBB). It is a physical barrier with tight junction proteins and high selectivity to limit the substance transportation between the blood and neural tissues. Thus, it is important to understand BBB transport mechanisms for developing novel drug carriers to overcome the BBB. This paper introduces the structure of the BBB and its physiological transport mechanisms. Meanwhile, different strategies for crossing the BBB by using nanomaterial-based drug carriers are reviewed, including carrier-mediated, adsorptive-mediated, and receptor-mediated transcytosis. Since the viral-induced CNS diseases are associated with BBB breakdown, various neurotropic viruses and their mechanisms on BBB disruption are reviewed and discussed, which are considered as an alternative solution to overcome the BBB. Therefore, most recent studies on virus-mimicking nanocarriers for drug delivery to cross the BBB are also reviewed and discussed. On the other hand, the routes of administration of drug-loaded nanocarriers to the CNS have been reviewed. In sum, this paper reviews and discusses various strategies and routes of nano-formulated drug delivery systems across the BBB to the brain, which will contribute to the advanced diagnosis and treatment of CNS diseases.


Subject(s)
Blood-Brain Barrier/metabolism , Drug Carriers/chemistry , Drug Delivery Systems , Nanostructures/chemistry , Animals , Biological Transport , Humans
6.
Biomolecules ; 12(7)2022 07 11.
Article in English | MEDLINE | ID: covidwho-1928474

ABSTRACT

The number of deaths has been increased due to COVID-19 infections and uncertain neurological complications associated with the central nervous system. Post-infections and neurological manifestations in neuronal tissues caused by COVID-19 are still unknown and there is a need to explore how brainstorming promoted congenital impairment, dementia, and Alzheimer's disease. SARS-CoV-2 neuro-invasion studies in vivo are still rare, despite the fact that other beta-coronaviruses have shown similar properties. Neural (olfactory or vagal) and hematogenous (crossing the blood-brain barrier) pathways have been hypothesized in light of new evidence showing the existence of SARS-CoV-2 host cell entry receptors into the specific components of human nerve and vascular tissue. Spike proteins are the primary key and structural component of the COVID-19 that promotes the infection into brain cells. Neurological manifestations and serious neurodegeneration occur through the binding of spike proteins to ACE2 receptor. The emerging evidence reported that, due to the high rate in the immediate wake of viral infection, the olfactory bulb, thalamus, and brain stem are intensely infected through a trans-synaptic transfer of the virus. It also instructs the release of chemokines, cytokines, and inflammatory signals immensely to the blood-brain barrier and infects the astrocytes, which causes neuroinflammation and neuron death; and this induction of excessive inflammation and immune response developed in more neurodegeneration complications. The present review revealed the pathophysiological effects, molecular, and cellular mechanisms of possible entry routes into the brain, pathogenicity of autoantibodies and emerging immunotherapies against COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Blood-Brain Barrier/metabolism , Brain/metabolism , Humans , Spike Glycoprotein, Coronavirus/chemistry
7.
J Neuroinflammation ; 19(1): 149, 2022 Jun 15.
Article in English | MEDLINE | ID: covidwho-1886948

ABSTRACT

BACKGROUND: The emergence of the novel, pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global health emergency. SARS-CoV-2 is highly contagious and has a high mortality rate in severe patients. However, there is very limited information on the effect of SARS-CoV-2 infection on the integrity of the blood-brain barrier (BBB). METHODS: RNA-sequencing profiling was performed to analyze the transcriptomic changes in human brain microvascular endothelial cells (hBMECs) after SARS-CoV-2 infection. Bioinformatic tools were used for differential analysis. Immunofluorescence, real-time quantitative PCR, and Western blotting analysis were used to explore biological phenotypes. RESULTS: A total of 927 differentially expressed genes were identified, 610 of which were significantly upregulated while the remaining 317 were downregulated. We verified the significant induction of cytokines, chemokines, and adhesion molecules in hBMECs by SARS-CoV-2, suggesting an activation of the vascular endothelium in brain. Moreover, we demonstrated that SARS-CoV-2 infection could increase the BBB permeability, by downregulating as well as remodeling the intercellular tight junction proteins. CONCLUSIONS: Our findings demonstrated that SARS-CoV-2 infection can cause BBB dysfunction, providing novel insights into the understanding of SARS-CoV-2 neuropathogenesis. Moreover, this finding shall constitute a new approach for future prevention and treatment of SARS-CoV-2-induced CNS infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Blood-Brain Barrier/metabolism , Brain , Endothelial Cells , Humans
8.
Neuropharmacology ; 209: 109023, 2022 05 15.
Article in English | MEDLINE | ID: covidwho-1821424

ABSTRACT

Acute neurological alterations have been associated with SARS-CoV-2 infection. Additionally, it is becoming clear that coronavirus disease 2019 (COVID-19) survivors may experience long-term neurological abnormalities, including cognitive deficits and mood alterations. The mechanisms underlying acute and long-term impacts of COVID-19 in the brain are being actively investigated. Due to the heterogeneous manifestations of neurological outcomes, it is possible that different mechanisms operate following SARS-CoV-2 infection, which may include direct brain infection by SARS-CoV-2, mechanisms resulting from hyperinflammatory systemic disease, or a combination of both. Inflammation is a core feature of COVID-19, and both central and systemic inflammation are known to lead to acute and persistent neurological alterations in other diseases. Here, we review evidence indicating that COVID-19 is associated with neuroinflammation, along with blood-brain barrier dysfunction. Similar neuroinflammatory signatures have been associated with Alzheimer's disease and major depressive disorder. Current evidence demonstrates that patients with pre-existing cognitive and neuropsychiatric deficits show worse outcomes upon infection by SARS-CoV-2 and, conversely, COVID-19 survivors may be at increased risk of developing dementia and mood disorders. Considering the high prevalence of COVID-19 patients that recovered from infection in the world and the alarming projections for the prevalence of dementia and depression, investigation of possible molecular similarities between those diseases may shed light on mechanisms leading to long-term neurological abnormalities in COVID-19 survivors.


Subject(s)
COVID-19/complications , Cognitive Dysfunction/etiology , Depression/etiology , Neuroinflammatory Diseases/physiopathology , Affect/physiology , Blood-Brain Barrier/metabolism , COVID-19/physiopathology , Cognitive Dysfunction/physiopathology , Depression/physiopathology , Humans , Inflammation/physiopathology , SARS-CoV-2 , Virus Diseases/complications
9.
Int J Mol Sci ; 23(9)2022 May 05.
Article in English | MEDLINE | ID: covidwho-1820298

ABSTRACT

Though COVID-19 is primarily characterized by symptoms in the periphery, it can also affect the central nervous system (CNS). This has been established by the association between stroke and COVID-19. However, the molecular mechanisms that cause stroke related to a COVID-19 infection have not been fully explored. More specifically, stroke and COVID-19 exhibit an overlap of molecular mechanisms. These similarities provide a way to better understand COVID-19 related stroke. We propose here that peripheral macrophages upregulate inflammatory proteins such as matrix metalloproteinases (MMPs) in response to SARS-CoV-2 infection. These inflammatory molecules and the SARS-CoV-2 virus have multiple negative effects related to endothelial dysfunction that results in the disruption of the blood-brain barrier (BBB). Finally, we discuss how the endothelial blood-brain barrier injury alters central nervous system function by leading to astrocyte dysfunction and inflammasome activation. Our goal is to elucidate such inflammatory pathways, which could provide insight into therapies to combat the negative neurological effects of COVID-19.


Subject(s)
COVID-19 , Stroke , Blood-Brain Barrier/metabolism , COVID-19/complications , Central Nervous System , Humans , SARS-CoV-2 , Stroke/metabolism
10.
Brain Res ; 1780: 147804, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1654119

ABSTRACT

The socio-economic impact of diseases associated with cognitive impairment is increasing. According to the Alzheimer's Society there are over 850,000 people with dementia in the UK, costing the UK £26 billion in 2013. Therefore, research into treatment of those conditions is vital. Research into the cerebral endothelial glycocalyx (CeGC) could offer effective treatments. The CeGC, consisting of proteoglycans, glycoproteins and glycolipids, is a dynamic structure covering the luminal side oftheendothelial cells of capillaries throughout the body. The CeGC is thicker in cerebral micro vessels, suggesting specialisation for its function as part of the blood-brain barrier (BBB). Recent research evidences that the CeGC is vital in protecting fragile parenchymal tissue and effective functioning of the BBB, as one particularly important CeGC function is to act as a protective barrier and permeability regulator. CeGC degradation is one of the factors which can lead to an increase in BBB permeability. It occurs naturally in aging, nevertheless, premature degradationhas beenevidencedin multipleconditions linked to cognitive impairment, such as inflammation,brain edema, cerebral malaria, Alzheimer's and recently Covid-19. Increasing knowledge of the mechanisms of CeGC damage has led to research into preventative techniques showing that CeGC is a possible diagnostic marker and a therapeutic target. However, the evidence is relatively new, inconsistent and demonstrated mainly in experimental models. This review evaluates the current knowledge of the CeGC, its structure, functions, damage and repair mechanisms and the impact of its degeneration on cognitive impairment in multiple conditions, highlighting the CeGC as a possible diagnostic marker and a potential target for therapeutic treatment.


Subject(s)
Blood-Brain Barrier/metabolism , Cognitive Dysfunction/metabolism , Endothelium, Vascular/metabolism , Glycocalyx/metabolism , Microvessels/metabolism , Blood-Brain Barrier/pathology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/pathology , Endothelium, Vascular/pathology , Glycocalyx/pathology , Humans , Microvessels/pathology
11.
FEBS Lett ; 595(23): 2854-2871, 2021 12.
Article in English | MEDLINE | ID: covidwho-1508599

ABSTRACT

SARS-CoV-2 has infected hundreds of millions of people with over four million dead, resulting in one of the worst global pandemics in recent history. Neurological symptoms associated with COVID-19 include anosmia, ageusia, headaches, confusion, delirium, and strokes. These may manifest due to viral entry into the central nervous system (CNS) through the blood-brain barrier (BBB) by means of ill-defined mechanisms. Here, we summarize the abilities of SARS-CoV-2 and other neurotropic RNA viruses, including Zika virus and Nipah virus, to cross the BBB into the CNS, highlighting the role of magnetic resonance imaging (MRI) in assessing presence and severity of brain structural changes in COVID-19 patients. We present new insight into key mutations in SARS-CoV-2 variants B.1.1.7 (P681H) and B.1.617.2 (P681R), which may impact on neuropilin 1 (NRP1) binding and CNS invasion. We postulate that SARS-CoV-2 may infect both peripheral cells capable of crossing the BBB and brain endothelial cells to traverse the BBB and spread into the brain. COVID-19 patients can be followed up with MRI modalities to better understand the long-term effects of COVID-19 on the brain.


Subject(s)
Blood-Brain Barrier , Henipavirus Infections , Nipah Virus , SARS-CoV-2 , Zika Virus Infection , Zika Virus , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/physiopathology , Blood-Brain Barrier/virology , COVID-19/epidemiology , COVID-19/genetics , COVID-19/metabolism , COVID-19/physiopathology , Henipavirus Infections/epidemiology , Henipavirus Infections/genetics , Henipavirus Infections/metabolism , Henipavirus Infections/physiopathology , Humans , Mutation , Nipah Virus/genetics , Nipah Virus/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Zika Virus/genetics , Zika Virus/metabolism , Zika Virus Infection/epidemiology , Zika Virus Infection/genetics , Zika Virus Infection/metabolism , Zika Virus Infection/physiopathology
12.
Nat Neurosci ; 24(11): 1522-1533, 2021 11.
Article in English | MEDLINE | ID: covidwho-1500484

ABSTRACT

Coronavirus disease 2019 (COVID-19) can damage cerebral small vessels and cause neurological symptoms. Here we describe structural changes in cerebral small vessels of patients with COVID-19 and elucidate potential mechanisms underlying the vascular pathology. In brains of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected individuals and animal models, we found an increased number of empty basement membrane tubes, so-called string vessels representing remnants of lost capillaries. We obtained evidence that brain endothelial cells are infected and that the main protease of SARS-CoV-2 (Mpro) cleaves NEMO, the essential modulator of nuclear factor-κB. By ablating NEMO, Mpro induces the death of human brain endothelial cells and the occurrence of string vessels in mice. Deletion of receptor-interacting protein kinase (RIPK) 3, a mediator of regulated cell death, blocks the vessel rarefaction and disruption of the blood-brain barrier due to NEMO ablation. Importantly, a pharmacological inhibitor of RIPK signaling prevented the Mpro-induced microvascular pathology. Our data suggest RIPK as a potential therapeutic target to treat the neuropathology of COVID-19.


Subject(s)
Blood-Brain Barrier/metabolism , Brain/metabolism , Coronavirus 3C Proteases/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Microvessels/metabolism , SARS-CoV-2/metabolism , Animals , Blood-Brain Barrier/pathology , Brain/pathology , Chlorocebus aethiops , Coronavirus 3C Proteases/genetics , Cricetinae , Female , Humans , Intracellular Signaling Peptides and Proteins/genetics , Male , Mesocricetus , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microvessels/pathology , SARS-CoV-2/genetics , Vero Cells
13.
J Neuroimmune Pharmacol ; 16(4): 722-728, 2021 12.
Article in English | MEDLINE | ID: covidwho-1482280

ABSTRACT

The SARS-CoV-2 spike protein has been shown to disrupt blood-brain barrier (BBB) function, but its pathogenic mechanism of action is unknown. Whether angiotensin converting enzyme 2 (ACE2), the viral binding site for SARS-CoV-2, contributes to the spike protein-induced barrier disruption also remains unclear. Here, a 3D-BBB microfluidic model was used to interrogate mechanisms by which the spike protein may facilitate barrier dysfunction. The spike protein upregulated the expression of ACE2 in response to laminar shear stress. Moreover, interrogating the role of ACE2 showed that knock-down affected endothelial barrier properties. These results identify a possible role of ACE2 in barrier homeostasis. Analysis of RhoA, a key molecule in regulating endothelial cytoskeleton and tight junction complex dynamics, reveals that the spike protein triggers RhoA activation. Inhibition of RhoA with C3 transferase rescues its effect on tight junction disassembly. Overall, these results indicate a possible means by which the engagement of SARS-CoV-2 with ACE2 facilitates disruption of the BBB via RhoA activation. Understanding how SARS-CoV-2 dysregulates the BBB may lead to strategies to prevent the neurological deficits seen in COVID-19 patients.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Blood-Brain Barrier/metabolism , Humans , Protein Binding , SARS-CoV-2 , rhoA GTP-Binding Protein
14.
Methods Mol Biol ; 2311: 185-193, 2021.
Article in English | MEDLINE | ID: covidwho-1482181

ABSTRACT

Studies of blood-brain barrier (BBB) require developing of a novel and convenient in vitro endothelial cell model. We isolated primary human and rodent brain microvascular endothelial cells and developed methods for culturing, characterization, and high-efficiency transfection of endothelial cells. Here, we describe the improved methods to obtain in vitro human and rodent BBB models to study expression of endogenous and exogenous genes of interest.


Subject(s)
Blood-Brain Barrier/physiology , Brain/blood supply , Cell Separation , Endothelial Cells/physiology , Microvessels/cytology , Transfection , Animals , Blood-Brain Barrier/metabolism , Cell Culture Techniques , Cell Differentiation , Cell Proliferation , Cells, Cultured , Endothelial Cells/metabolism , Fetus , Gestational Age , Humans , Mice , Rats
15.
Viruses ; 13(10)2021 10 08.
Article in English | MEDLINE | ID: covidwho-1463838

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes the coronavirus disease (COVID-19), is currently infecting millions of people worldwide and is causing drastic changes in people's lives. Recent studies have shown that neurological symptoms are a major issue for people infected with SARS-CoV-2. However, the mechanism through which the pathological effects emerge is still unclear. Brain endothelial cells (ECs), one of the components of the blood-brain barrier, are a major hurdle for the entry of pathogenic or infectious agents into the brain. They strongly express angiotensin converting enzyme 2 (ACE2) for its normal physiological function, which is also well-known to be an opportunistic receptor for SARS-CoV-2 spike protein, facilitating their entry into host cells. First, we identified rapid internalization of the receptor-binding domain (RBD) S1 domain (S1) and active trimer (Trimer) of SARS-CoV-2 spike protein through ACE2 in brain ECs. Moreover, internalized S1 increased Rab5, an early endosomal marker while Trimer decreased Rab5 in the brain ECs. Similarly, the permeability of transferrin and dextran was increased in S1 treatment but decreased in Trimer, respectively. Furthermore, S1 and Trimer both induced mitochondrial damage including functional deficits in mitochondrial respiration. Overall, this study shows that SARS-CoV-2 itself has toxic effects on the brain ECs including defective molecular delivery and metabolic function, suggesting a potential pathological mechanism to induce neurological signs in the brain.


Subject(s)
Blood-Brain Barrier/metabolism , Brain/pathology , COVID-19/pathology , Endothelial Cells/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Animals , Brain/metabolism , Brain/virology , Endothelial Cells/virology , Humans , Mice , Mitochondria/metabolism , Protein Domains , SARS-CoV-2/metabolism , rab5 GTP-Binding Proteins/metabolism
16.
Signal Transduct Target Ther ; 6(1): 337, 2021 09 06.
Article in English | MEDLINE | ID: covidwho-1402050

ABSTRACT

SARS-CoV-2 has been reported to show a capacity for invading the brains of humans and model animals. However, it remains unclear whether and how SARS-CoV-2 crosses the blood-brain barrier (BBB). Herein, SARS-CoV-2 RNA was occasionally detected in the vascular wall and perivascular space, as well as in brain microvascular endothelial cells (BMECs) in the infected K18-hACE2 transgenic mice. Moreover, the permeability of the infected vessel was increased. Furthermore, disintegrity of BBB was discovered in the infected hamsters by administration of Evans blue. Interestingly, the expression of claudin5, ZO-1, occludin and the ultrastructure of tight junctions (TJs) showed unchanged, whereas, the basement membrane was disrupted in the infected animals. Using an in vitro BBB model that comprises primary BMECs with astrocytes, SARS-CoV-2 was found to infect and cross through the BMECs. Consistent with in vivo experiments, the expression of MMP9 was increased and collagen IV was decreased while the markers for TJs were not altered in the SARS-CoV-2-infected BMECs. Besides, inflammatory responses including vasculitis, glial activation, and upregulated inflammatory factors occurred after SARS-CoV-2 infection. Overall, our results provide evidence supporting that SARS-CoV-2 can cross the BBB in a transcellular pathway accompanied with basement membrane disrupted without obvious alteration of TJs.


Subject(s)
Basement Membrane/metabolism , Blood-Brain Barrier/metabolism , COVID-19/metabolism , SARS-CoV-2/metabolism , Tight Junctions/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Basement Membrane/pathology , Basement Membrane/virology , Blood-Brain Barrier/pathology , Blood-Brain Barrier/virology , COVID-19/genetics , COVID-19/pathology , Chlorocebus aethiops , Disease Models, Animal , Humans , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Transgenic , SARS-CoV-2/genetics , Tight Junctions/genetics , Tight Junctions/pathology , Tight Junctions/virology , Vero Cells
17.
CNS Neurosci Ther ; 27(1): 36-47, 2021 01.
Article in English | MEDLINE | ID: covidwho-1388231

ABSTRACT

The blood-brain barrier (BBB) is an important physiological barrier that separates the central nervous system (CNS) from the peripheral circulation, which contains inflammatory mediators and immune cells. The BBB regulates cellular and molecular exchange between the blood vessels and brain parenchyma. Normal functioning of the BBB is crucial for the homeostasis and proper function of the brain. It has been demonstrated that peripheral inflammation can disrupt the BBB by various pathways, resulting in different CNS diseases. Recently, clinical research also showed CNS complications following SARS-CoV-2 infection and chimeric antigen receptor (CAR)-T cell therapy, which both lead to a cytokine storm in the circulation. Therefore, elucidation of the mechanisms underlying the BBB disruption induced by peripheral inflammation will provide an important basis for protecting the CNS in the context of exacerbated peripheral inflammatory diseases. In the present review, we first summarize the physiological properties of the BBB that makes the CNS an immune-privileged organ. We then discuss the relevance of peripheral inflammation-induced BBB disruption to various CNS diseases. Finally, we elaborate various factors and mechanisms of peripheral inflammation that disrupt the BBB.


Subject(s)
Blood-Brain Barrier/metabolism , Brain/metabolism , COVID-19/metabolism , Inflammation Mediators/metabolism , Animals , Blood-Brain Barrier/immunology , Blood-Brain Barrier/pathology , Brain/immunology , Brain/pathology , COVID-19/immunology , COVID-19/pathology , Endothelial Cells/immunology , Endothelial Cells/metabolism , Humans , Inflammation/immunology , Inflammation/metabolism , Inflammation/pathology , Inflammation Mediators/immunology
18.
Eur J Pharmacol ; 890: 173648, 2021 Jan 05.
Article in English | MEDLINE | ID: covidwho-1385504

ABSTRACT

In an attempt to search for selective inhibitors against the SARS-CoV-2 which caused devastating of lives and livelihoods across the globe, 415 natural metabolites isolated from several plants, fungi and bacteria, belonging to different classes, were investigated. The drug metabolism and safety profiles were computed in silico and the results showed seven compounds namely fusaric acid, jasmonic acid, jasmonic acid methyl ester, putaminoxin, putaminoxin B and D, and stagonolide K were predicted to having considerable absorption, metabolism, distribution and excretion parameters (ADME) and safety indices. Molecular docking against the receptor binding domain (RBD) of spike glycoprotein (S1) and the main protease (Mpro) exposed the compounds having better binding affinity to main protease as compared to the S1 receptor binding domain. The docking results were compared to an antiviral drug penciclovir reportedly of clinical significance in treating the SARS-CoV-2 infected patients. The results demonstrated the test compounds jasmonic acid, putaminoxins B and D bound to the HIS-CYS catalytic dyad as well as to other residues within the MPro active site with much greater affinity than penciclovir. The findings of the study suggest that these compounds could be explored as potential SARS-CoV-2 inhibitors, and could further be combined with the experimental investigations to develop effective therapeutics to deal with the present pandemic.


Subject(s)
Antiviral Agents/pharmacology , Biological Products/pharmacology , Coronavirus 3C Proteases/metabolism , Phytochemicals/pharmacology , Protease Inhibitors/pharmacology , Spike Glycoprotein, Coronavirus/metabolism , Antiviral Agents/pharmacokinetics , Bacteria/metabolism , Biological Products/pharmacokinetics , Blood-Brain Barrier/metabolism , Coronavirus 3C Proteases/antagonists & inhibitors , Cyclopentanes/pharmacokinetics , Cyclopentanes/pharmacology , Fungi/metabolism , Humans , Intestinal Absorption , Lactones/pharmacokinetics , Lactones/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Oxylipins/pharmacokinetics , Oxylipins/pharmacology , Phytochemicals/pharmacokinetics , Plants/metabolism , Protease Inhibitors/pharmacokinetics , Protein Binding , Protein Domains , SARS-CoV-2
20.
Int J Mol Sci ; 22(13)2021 Jun 28.
Article in English | MEDLINE | ID: covidwho-1288898

ABSTRACT

2020 and 2021 have been unprecedented years due to the rapid spread of the modified severe acute respiratory syndrome coronavirus around the world. The coronavirus disease 2019 (COVID-19) causes atypical infiltrated pneumonia with many neurological symptoms, and major sleep changes. The exposure of people to stress, such as social confinement and changes in daily routines, is accompanied by various sleep disturbances, known as 'coronasomnia' phenomenon. Sleep disorders induce neuroinflammation, which promotes the blood-brain barrier (BBB) disruption and entry of antigens and inflammatory factors into the brain. Here, we review findings and trends in sleep research in 2020-2021, demonstrating how COVID-19 and sleep disorders can induce BBB leakage via neuroinflammation, which might contribute to the 'coronasomnia' phenomenon. The new studies suggest that the control of sleep hygiene and quality should be incorporated into the rehabilitation of COVID-19 patients. We also discuss perspective strategies for the prevention of COVID-19-related BBB disorders. We demonstrate that sleep might be a novel biomarker of BBB leakage, and the analysis of sleep EEG patterns can be a breakthrough non-invasive technology for diagnosis of the COVID-19-caused BBB disruption.


Subject(s)
Brain/metabolism , COVID-19/pathology , Sleep Wake Disorders/pathology , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/virology , COVID-19/virology , Circadian Rhythm , Cytokines/metabolism , Humans , SARS-CoV-2/isolation & purification , Sleep Wake Disorders/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL